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A R2. JUMP LINEAR QUADRATIC GAUSSIAN PROBLEM

es sregarding the design of fault-tolerant Dapproach is to model component failures by
0; controllers that may endow systems with dynamic randomly and abruptly changing parameters (see 3

reliability are addressed here. Results for jump for a survey of problems of this type). Assui elinear quadratic Gaussian (JLQG) control problems •that a given system can operate in N<"o different
are extended to include random Jump costs, ra- modes, each corresponding to a particular set ofaretoxtediscontinuities, and a simple case of non- component and environmental conditions. Motivatedrkovian mode transitions. a by concerns of robustness and implementability, as1. INTRODUCTION 'well as mathematical tractability, a linear qua-Regardless of how they are designed and dratic Gaussian problem formulation can be chosen
manufactured, engineering systems occasionally for operation in each mode.
fail to function as expected due to component fail-
ures and environmental disturbances. As a result, L p(t)E{l,...,N) denote the mode of the
unacceptably high costs may be incurred. Ideally, system at time t, where {-(t); t<t<T} is a finite
systems should be designed to be dynamically re- state Markov process having transition probabili-
liable. That is, they should function "acceptably ties
well" despite various component failures and envi- (1) Pr{p(t+dt)=j](t)=i) qi (t)dt+O(dt i1J

,q ronmental disturbances. Many complex engineering Li -. ti t 0dt+O(dt) i-J
systems currently in use do not possess this pro-
perty of fault-tolerance. For example, electrical and initial probability distribution P(t ). The
power systems have been known to experience com- o
plete blackouts resulting from the failure of a qij and are continuous nonnegative functions,
few components (such as switches), or as a conse- and qj t) - q jk().
quence of abrupt disturbances (such as lightning k "
bolts, and sudden loads). In between jumps in p, the system state tra-

The design of fault-tolerant controllers in- jectory x(t) satisfies a vector stochastic dif-
volves a number of subjective questions. Among ferential equation
these are modelling issues, particularly with res-
pect to failure events, and clarification of dif- (2) dx-=!Mt,k)x(t)+B(t,k)u(tIdt+C(t,k)dw(t)
ferent control tasks such as: the detection of x (to)  x
failures, the adaptation and reorganization of for each mode k, where xCR , ucR is the control,
controllers both in response to detected failures w(t) is a separable Wiener process and x is a
and in anticipation of them, and the prevention of a
certain failures. Various costs .ust be quanti- Gaussian random variable independent of the dw
fied and compared, including those relating to ope- increments. Assume that A(t.k),B(t,k),C(tk) are
ration under different failure conditions, costs piecewise-continuous in t on the known finite in-
incurred at failure instants, and costs related to terval It ,T], for each kc{l,...,N}.
improper failure detection. The goal is to find Together the joint process {x(t),P(t)) is
objective approaches for the design of fault-tol- assumed to be Markov, and it is assumed that both
erant systems; to formulate and solve problems x(t) and p(t) are perfectly observed at each t.
that capture and quantify the subjective issues of The "jump linear quadratic Gaussian" control pro-
fault-tolerant control. blem involves minimization of the quadratic cost

In this paper, some extensions to basic re- functional
suits 111, 12] concerning the control of systems ,.T

having randomly lumping parameters are presented, (3) Efj(u] E ] (x'(9)Q(sP(s))x(si )
as an initial step towards fault-/thI~ t optimal t ) IdsWtotia o+u Cs) R~a, s a() Idcontrol. I ) •1
a This work was supported in part'ythe Office of + x'(TIKIP(T))xT
Naval Research under Contract Mo. N00014-77-C-0224 q where u(t) is specified by a feedback control law
and i rtby NASA.Ame Remo c Center under " satisfying certain technical conditions (see 1l1).

0. Gran -22-09-124. -The work of the first au- The matrices Q(t,J)-Q(tJ)' >0 and R(t,j) ,
0C thor wia aoisported in part by a National R(t,J)' >CI (E>0) are piecewise continuous in t,
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namic progrimming methods 11) or a stochastic ma-
ximum principle [2), it can be shown that the It,J)trIc(ti)Kti)C(ti)Iq ()rti) (9)

optimal feedback control law for operation in aech -I q t (t)rit,i)+tr(H'(t)K(t,i)Hit)V h(t))).
mode p(t)=j has the linear form iY'j j

-1 The proof of this result involves a straightforwanl
(4) u*it) -oR'l(t,j)9 (t,j)K(t,j)x(t) spplication of the Bellman equation, as in (1).
where the symmetric nxn matrices K(t,j)>O are spe- 3. FURTHER CONSIDERATIONS
cified by N coupled matrix Riccati differential
equations. There are many other aspects of fault-tolerant

This problem captures some aspects of fault- control that are not captured by the above for-
tolerant control. Changes in parameters A,B,C mulation. For example, x(t) and P(t) are often
model abrupt failure events such as actuator fai- not perfectly observable. If a linear function of
lures, broken connections, and the like. Different x(t) is observed in the presence of additive
relative weightings can be assigned to.quantities Gaussian white noise (but p(t) is perfectly oh-
such as performance tolerance and expended control served), then a separation (certainty equivalence)
energy in various modes, through Q, R and 1% val- result follows, due to the linear quadratic for-
ues. mulation. In each mode, a Kalman filter generates

When the mode of the system changes, there the best (conditional mean) estimate of x(t) which
may be random juM costs incurred that reflect is then used by the optimal feedback control law
"start-up" or "shut-down" costs, and transient as the true value. If p(t) is also not perfectly
costs resulting from the need to switch controls, observed, then the combined filtering and control
One way to incorporate them in the optimal control problem is much harder because of 'adaptive-dual'
problem is to charge costs x'(t)Z (t)x(t) when difficulties; that is, u(t) can be used both to
the mode shifts from i to j at ti3 t, where the control the system, and to "probe" for information
Z i(t)>0 are independent nxn-valued sysmmetric ma- useful in estimating x and P.
i The {( t) process need not be MarkoM for exam-

trices of stochastic processes with mean value ple, in some systems past mode values and x(t)
functions Zijit)=Zij't)>0 and finite variances histories may affect mode transition rates. Sup-

(and are independent of x0 ,p0 ,w(t)). The cost pose there exists a stochastic process {0(t)) such
functional then becomes that the joint process (p(t),0(t)) is Markov, and
(5) T the intensities in (1) are of the form q it,O(t)),

EIu))=EJu+ xf It)- 1t)ut)qi t)dt). qjj(t,$(t))- If 0(t) changes values onlj when
i Jit p(t) jumps (and not in between), then the optimal

When the mode of the system shifts, there may control law has the form (4), where the gains
also be random discontinuities in trajectory x(t), K(t,p(t),O(t)) are given by (7)-(S) but are par-
resulting from impulsive external disturbances, or ameterized by 0. B(t) might correspond to the
phenomena such as changes in amplifier biases. If past order of mode shifts (thus taking values in a
the modes represent different linearized models finite set) or to mode shift times. These can be
of a nonlinear system, jumps in x(t) might cor- used to incorporate models of component failures
respond to initialization along different nominal that are dependent upon elapsed times of operation.
paths. Deterministic discontinuities linear in If 0(t) changes values between P(t) jumps,

x(t) are considered in [4]. Here we assume that the control problem appears to be much more dif-

the trajectory jumps are described by ficult. Another problem formulation (currently

(6) xit4) = F (t)xt)+ H ()under study) includes voluntary changes in p(t),
it Hijt)vit) as control actions with associated costs. Some

when the mode shifts from i to j at t. Fij (t) ER
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